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The two enantiomers of trycyclic furan derivatives were prepared respectively from Diels—Alder reactions of oxycyclic dienes 3a and 3b,
followed by degradation of the 2-(benzyloxy)ethyl group. Compounds 3a and 3b can be selectively synthesized by [3+2]-cycloaddition of
vinylpropargyltungsten complex with (2S)-(benzyloxy)-propanal.

Tricyclic furan derivatives are often found in naturally tions' of chiral oxacyclic diene8aand3b which are useful
occurring compounds? Shown in Scheme 1 are compounds  building blocks for enantiopure tricyclic furans. The 2-(ben-
zyloxy)ethyl group remaining after the cycloaddition can be
I tansformed into an acetate group efficiently (vide infra).
Scheme 1 We previously reported a facile [3+2]-cycloaddition of
propargyltungsten compounds with aldehydes to yield tung-
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sten-2,5-dihydrofur-3-yl complexésThe reaction is pro-

posed to involve a zwitterionic intermediate. To highlight 1gpie 1. Asymmetric Diels—Alder Reaction of 3a and 3b with

the utility of this cyclization, we prepare®$)-2-(benzy-
loxy)propanal (ee= 98%) according to literature repofts.
Cycloaddition of this chiral aldehyde with vinylpropargyl-
tungsten complex proceeded smoothly in the presence of
Lewis acid to give a mixture of two diastereomeric products
2-syn/2-anti. These two products were separable by column
chromatography and the isolated yields are summarized in
Scheme 2. TiGland SnC/{ lead tosyn-selectivity via metal
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chelatiorf of the aldehyde and benzyloxy group whereas-BF
Et,O results in thenti-selectivity following a Felkir-Ann
model. The configurations a2-anti and 2-synwere con-
firmed by X-ray diffraction studies of their DielsAlder
cycloadducts. Vigorous efforts were made for hydrodemeta-
lation of 2a-synand 2-anti to obtain the desired oxacyclic
dienes3a and3b. We found thatm-CPBA oxidation oRa-

anti and 2a-synin CH,Cl, effected hydrodemetalation to
afford 3a and3b in 83% and 85% yields, respectively. No
other byproducts were found according to thé NMR
spectra of the crude products. In our synthetic protocol, the
2-(benzyloxy)ethyl substituent 8aand3b is the degradable
group for subsequent Diels—Alder reaction.

We first examined the cycloaddition of oxacyclic diene
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a ConditionA: BF3-Et,0 (1.0 equiv), 23C, CH,Cl, —78°C to 23 °C.
ConditionB: toluene, 80°C.

3a with cyclohexenone in hot toluene (Table 1, entry 1).

Three stereoisomers ca. 10:3:1 were obtained in a combinedhe major diastereomdain only 23% vyield. This problem

yield of 86%. Fractional crystallization of this mixture gave
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can be circumvented with the use of BE,O which effected
the cycloaddition at 23C, yielding a single diastereomer
4ain 63% yield after recrystallization. The configuration of
4a was determined byH NOE spectroscopy summarized
in Scheme 3. The regiochemistry is inferred from th& H
proton (63.12), which shows a quartet (dd,= 10.0, 8.2
Hz), whereas the Hproton ¢ 1.84) shows a complex
multiplet. The structure ofa indicates that cyclohexenone
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Scheme 3 Scheme 4
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approaches the dier8a in an endofashion but opposite to )
the (benzyloxy)ethyl substituent. This stereoselectivity is m-CPBA Ac
remarkable since eight isomers are likely to occursBEO NaHCO, ™M
also effected asymmetric cycloaddition ®& with benzo- 94% ent10

quinone and cyclopentenone (&, 23 °C) to afford
compoundbaand6ain 72% and 67% vyields, respectively,
after a single crystallization (entries-3). The reaction of

! - ) ) afforded the keton® in 82% overall yield. The molecular
3awith N-phenylmale|m|de and maleic gnhy dride proceeded structure o®'%was determined by an X-ray diffraction study
smcl)othlylm TOt toluene (SSC' 3 Z)’ yleldlng?a an;j 8a q which reveals tha® has twocis-configurations in the three
exclusively. In-entry 5 the products consist o % 61 fused rings. Degradation of the acetyl group follows recent
d_|a|sdterfeiomer|ctnl1l!xtli_re, finally affording pu@a in 67% work by Kusumoté! who reported the alkoxyalkyl group is
yielda er'crys allization. . more prone to migration than an alkyl group in Baeyer
Shown in Table 1 are the results of asymmetric Diels— yjjjager oxidationsm-CPBA oxidation of compouné gave

Alder reactions of the oxacyclic dierg with the same ¢ gricyclic lactol10in 94% yield. This transformation was
olefins. Using the same approach, the cycloadddbtssb shown to proceed exclusively via retention of stereochem-

were obtained as one diastereomer (64—93% yields) aﬁeristry. Similarly, we also used compourith to obtain the
purification by recrystallization. These results indicate that enantiomers c’)f compound® and 10 in good yields.
the (benzyloxy)ethyl substituent @b is equally effective following the same protocol. The values of the resulting

iy that Iogaigéhe a.syng_TC d.cyc'oadditior.‘s' In entry ég;)/ productsent9 ([o] = +19.2, ¢ 4.22, CHG) andent10 ([a]
the maleic adduct Is a . lastereomeric mixture ( 0 _ _71.3’ c 168, CHQ) match well with those 09 ([(1] —

combined yields). Crystallization of this mixture gave pure 4191 ¢ 1.64. CH d10 — 4713 ¢1.02 CH
anhydride8b in 86% yield. Determination of the stereo- respééticveiy HPLE)::aIySé[Sa]show thét,ece ;/all,JeQ aG;‘?d

. . 1 i
(c}:l_r;femlf_try rfllg_s onfl5—|b NO dESIr?]:gi as V\;ﬁ” az X rag ent9 were 98% and 97%, respectively. The structurerd©
iraction studies o an ) gain, he observe was also confirmed by an X-ray stuéfy.

stereoselectivities were attributed to #radoefacial cycload- )
In summary, we used tungsten-mediated23-cycload-

dition and the steric effect of the 2-(benzyloxy)ethyl sub- " . : L
stituent. dition for selective syntheses of enantiopure oxacyclic dienes

3aand3b. The 2-(benzyloxy)ethyl substituent 8 and3b
effected asymmetric DielsAlder reaction; the cycloadducts
derived from benzoquinone, cyclohexenone, cyclopentenone,
N-phenylmaleimide, and maleic anhydride were obtained as
a single diastereomers in 633% yields. We have also
developed an efficient method for transformation of the
2-(benzyloxy)ethyl substituent into an acetate group. Using
this method, the two enantiomers of tricyclic furan deriva-
tives 10 and ent10 were obtained separately with high

Notably, compounds4da—8a are envisaged to be the
enantiomers oflb—8bif the 2-(benzyloxy)ethyl substituent
is ignored. It is imperative to remove this substituent with
cleavage of the tethered=«C bond to yield a simple furan
derivative. An efficient and stereospecific method has been
developed and the protocol is illustrated in Scheme 4.

The benzyl group of compounda was removed by Pd/
H, which also resulted in the stereoselective hydrogenation
of the internal olefin to give the alcohol (Scheme 4).
Subsequent oxidation of this crude alcohol with PCC

(10) Crystal data fo®: orthorhombic space group2:2:2;, a = 9.2239-
(19) A, b = 26.248(6) A,c = 6.4941(13) Az= 4,V = 1572.3(6) B, R1
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0.0607 and wR2= 0.1506 for 3514 unique reflectiors 2 o(l). J. Am. Chem. S0d997,119. 4541.

(9) Crystal data foBb: orthorhombic space group2,2:2;, a = 6.8329 (12) Crystal data foent-9: orthorhombic space grouP2,2:2;, a =
(2) A, b=18.1545(2) A,c = 29.8514 AV = 1663.29 R, Z = 4, R1= 6.4935 (11) Ab = 9.2208 (19) Ab = 26.244(4) A;z= 4,V = 1571.4 (6)
0.0749 and wR2= 0.1057 for 3320 unique reflectiors 2 o(l). A3, R1 =0.0447 and wR2= 0.1019 for 3551 unique reflections 2 o(l).
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enantiopurity. The success of this example highlights the use Supporting Information Available: Experimental pro-
of oxacyclic dienes3a and 3b for facile syntheses of cedures and spectral data of new compounds. Crystal data
enantiopure forms of tricyclic furan frameworks. of compound$b, 8b, 9, andent9. This material is available
free of charge via the Internet at http://pubs.acs.org.
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